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The equations of motion corresponding to master equations describing 
rotational relaxation in liquids are shown to be purely deterministic and, 
in general, nonlocal in time. 
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Stochastic equations are often used in the description of molecular motion in 
liquids. Two equivalent approaches are via the equation of motion for the 
variable of interest, and via an equation for the probability distribution 
function of this variable, i.e., a master equation. (1) For example, the trans- 
lational motion of a particle in the fluid can be described by the Debye 
diffusion equation. ~2) The motion can also be described by a linear Langevin 
equation with delta-correlated Gaussian noise. ~1'3) 

Rotational motion in liquids is often described by master equations for 
the probability distribution of molecular orientation. ~) Debye, in analogy 
to the translational description, presented a rotational diffusion equation for 
this probability. (2) Since his work, a variety of generalizations have appeared 
in the literature. (~) It is the purpose of this note to find the equations of motion 
for the orientational variables. 

All models of rotational relaxation in fluids must reflect the rotational 
isotropy of the fluid. This implies that the reorientational transition proba- 
bilities appearing in any master equation must only be functions of orientation 
changes and not of absolute orientations. We have shown that the Wigner 
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rotation matrices (5) are therefore eigenfunctions of the transition probabili- 
ties. (6~ Calculation of correlation functions of experimental interest which 
involve Wigner rotation matrices is greatly simplified by this result. 

Rotational isotropy then also implies a particularly simple form for the 
equations of motion describing the time development of the rotation matrices. 
Since the rotation matrices are normal modes of the system, we will show that 
their equations of motion are deterministic, the absence of a " random force" 
term arising from the lack of coupling between the modes. The equations of 
motion are, however, nonlocal in time. 

For simplicity we shall demonstrate these features for a fluid with one 
orientation variable described by the master equation (4~ 

aP(O, t[Oo)/at = dO' dr  A(O - 0'; t - r)P(O', rlOo) (1) 

Here P(O, t[ 0o) is the conditional probability that the orientation is 0 at time t 
given that it is initially 0o, and A(O - 0'; t - r) is the transition rate from 
O' to 0 in time t - ~-. The analysis below can also be carried out for a fluid 
with Euler angles as orientation variables and a more complex dynamical 
behavior than that implicit in Eq. (1). (4) 

Equation (1) can be rewritten as a Kramers-Moyal  expansion~7) 

oR(o, t l Oo)/Ot = d-~ ~.( t  - . )(e"/oo")P(O, d Oo) 
n = l  

(2) 

where 

.~( t )  = O / n O  dO' (0 - O')nA(O - 0'; t) (3) 

We define an operator A(t) by the equation 

fo OP(O, ttOo)/c~t = dr  A(t - r)P(O, ~-10o) (4) 

Comparison of the Laplace transforms of Eqs. (2) and (4) leads to 

~(0 ,  Sl0o) = [s - ~ ( s ) ]  -1 ~(0 - Oo) (5) 

with 

.~,(s) = ~ &~.(s)(a2"/ao 2~) (6) 
n = l  

Here we have noted that a.( t )  = 0 for all odd n. 
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In a one-variable description the Wigner rotat ion matrices reduce to 
(2~)-~/2 exp(ikO), where k is an integer. (5~ Thus the correlat ion functions of  
physical interest are 

Ck(t) = (1/2~)(e~~ ~~ 

: (1/2~) fo2~dO fo2"dOo e'k~176 t[00) (7) 

Use of  Eqs. (5) and (6) in the Laplace t ransform of  Eq. (7) and repeated 
integrations by parts yields 

~(s)]  ~e 'k~ C~(s) = (1/2~) dO e-~k~ - - (8) 

t t  is convenient  to work with the state ]k) of  which (2~r)-~/2 exp(ikO) is 
the orientation representation. In terms of  creation and annihilation operators 
a % )  = [k + 1) and a[k) = k lk  - 1), Eqs. (6) and (8) can be written as 

A(s) = ~ ( -  1)"a2.(s)(a*a) 2" (9) 
n = l  

and 

where 

Ck(s) = (k[ks)  (10) 

Iks) = Is - ~x(s)]-l]k> (11) 

In order  to obtain an equation of  mot ion  for the time evolution of  the 
state [k), we note that  the Laplace t ransform of  the time derivative (d/dt)[kt) 
is 

slks) - ]k) = [s - A(s)]-L~(s){k) (12) 

We define a projection opera tor  

e~ -= [k)<k I (13) 

which projects the initial contr ibut ion of  state ]k) f rom an arbitrary state, ca) 
The use of  the identity 

Is - (1  - P ~ ) ~ ( s ) ]  - 1  

= [s - A(s)] -1 - [s - A(s)]-iPkA(s)[s - (1 - l~ /c )z~k(S)]  - 1  (14) 

on the decomposi t ion A(s) lk)  = Pk~,(s)lk) + (1 -- Pk)A(s)lk) leads to the 
equat ion of  mot ion  

slks) - {k) = fi~k(s)[ks) + / ~ ( s ) I k s )  + tP~(s)) (15) 
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where 

(2~(s)  = (k[A,(s) lk  } (16) 

5 ~ ( s )  = <klh(s) (1  - r ' ~ ) [ s  - (1 - e ~ ) . ~ ( s ) ] - l ( l  - e~)h ( s ) l k>  ( 1 7 )  

and 

IF~(s)) = Is - (1 - P~)3,(s)]-l(1 - e ~ ) A ( s ) l k  > (18) 

From Eq. (9) it follows that Ik} is an eigenstate of A(s) and hence 
(1 - Pk)Jt(s)lk} = 0. Therefore the equation of motion reduces to 

sJks> - Ik> = Okk(s) lks}  (19) 

or, inverse-transforming, 

f; (d/dt)e ~k~ = dr  flkk(t -- "r)e ~~ (20) 

The equation of motion for the variable exp(ikO) is completely deterministic 
with a memory kernel defined in terms of the transition rate A(O, t). This 
result is not unexpected since the master equation, Eq. (l), implies that we 
have averaged over the bath variables (the phase space coordinates of all the 
particles except for the " t e s t "  particle) and also over the position, momentum, 
and angular momentum of the test particle. Thus, the only opportunity for a 
random force term is via mode coupling contained in the ?~k~(s) and tF~(s)> 
terms. The rotational invariance of A(O, t) ensures that the modes e ~k~ obey 
uncoupled equations for each k and hence there is no mode coupling here, 
The kernel in Eq. (20) is nonlocal in time because we used a non-Markovian 
transition rate, not because of mode coupling. 

It may readily be verified that the correlation function also obeys Eq. 
(20). The time course of the correlation function is determined by ftkk(t), a 
result completely equivalent to the master equation description. (4) 

It should be noted that the equation of motion for the variable 0 would 
not be closed. Rather, it would exhibit an additional term due to mode 
coupling. 
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